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Deterministically positioned defects — scalable quantum technologies

* Single dopant atoms can be positioned
deterministically in semiconductors using STM

* Enabling atomically-precise quantum devices

* Scaling to many dopants is essential for qubit
arrays and quantum architectures

See also: Roadmap on atomic-scale semiconductor devices,
Schofield et al., Nano Futures 9 012001 (2025)

* Single atomic defects can also be created
deterministically in 2D materials (e.g., MoS,,
hBN), enabling quantum emitters, photonic
circuits, and single-atom devices
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Nano Letters, 20, 4437 (2020)
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Fabrication to Understanding: Exploring the Foundations of Atomic-Scale Devices

Cryogenic Scanning Tunnelling Microscopy

We study atomic-scale quantum phenomena,
helping to build the scientific foundation for
future atomic-scale device concepts:

* Surface chemistry and adsorption studied
using STM

* Surface and sub-surface defect and dopant
states probed using tunnelling spectroscopy

* Band and valley structure characterised
with ARPES

e EUV-surface interactions to understand — | Constantinou et al.,

. . . Nature Commun.
mic-scal rning mechanism
atomic-scale patte g mechanisms 15, 694 (2024)

* Electronic structure and defect wave )
) . ) Tseng, et al., Science
functions modelled computationally (in- Advances 9, eadf5997
house and with collaborators) (2023)
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Fabrication strategy: atomic-scale dopant devices in semiconductors

STM Patterned Exposure Adsorption Incorporation Encapsulation

# Silicon ® Dopant ® Hydrogen

Atomic-scale dopant devices

* Hydrogen terminated silicon
patterned by STM

Dopant placement concept Single-atom devices

* Dopant precursors adsorb
onto exposed silicon

* Annealing incorporates
dOPantS; MBE Over'growth Tucker & Shen, Solid. State.
encapsu|ates them Electron. 42 1061 (1998)

Vsp (MV)

* Single dopants first -

positioned in 2003

Fueschle et al., Nature Nano. (2012)

* Single-atom devices i 7,
demonstrated (e.g, the Schofield, et al., PRL 91, 136104 (2003)
single-atom transistor) -
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Group-V donors in Si behave like hydrogen: s, 2p,...

Donor Physics in Silicon
* Substitutional group-V atoms /

in silicon (P, As, Sb, Bi) donate
one electron which can be Donor schematic Valley-Orbit Interference
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* Valley—orbit coupling lifts the hL
six-fold degeneracy "Bi
— unique A; ground state
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* Binding energy and Bohr
radius depend systematically Bohr radius ~| nm
on the donor species Valley interference — oscillatory wave function
A; ground state, Eg = 45 meV (P in Si)

J. Phys. Condens. Matter 27, (2015)
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Germanium for Atomic-Scale Quantum Technologies

Why Germanium?

* Larger Bohr radius — wider qubit spacing

* Stronger Stark effect
* Reduced exchange oscillation sensitivity
* Long donor spin coherence times (~ms)

* Isotopically purified & industry
compatible

Boron Carbon Nitrogen
10.811 12.011 14.007

13 14 15
Aluminum Silicon Phosphorus
26.982 28.086 30.974

31 32 33
Ga | Ge | As

Gallium Germanium Arsenic
69.732 72.61 74.922

49 50 51
In 'Sn Sb
Indium Tin Antimony
114.818 118.71 121.760

Why Arsenic!?

Arsine fully dissociates at room temperature on Ge(001),
leading to As incorporation into the surface

Atomic-resolution STM topography
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Dynamic behavior of features in STM data

Structures are assigned based on their calculated stability, their appearance, and observed transitions.
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Energies are from Gaussian |6 DFT calculations,
B3LYP, 6-3 1 | G++(2df,2pd), see manuscript for

details. Hofmann, et al., Angewandte Chemie, 62, 202213982 (2023)
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A New Surface-Chemistry Advantage for Germanium Quantum Technologies

STM Patterned Exposure

AsH, / Ge(001)

Incorporation Encapsulation

.V
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Room temperature

Eliminating the incorporation anneal for arsenic in
germanium compared to phosphorus in silicon
removes a major obstacle to scaling deterministic
donor arrays.

This positions germanium as a compelling material
platform for next-generation atomic-scale quantum
technologies.

Next steps: develop hydrogen-lithography methods
to deterministically create the m1 incorporated
structure.
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Arsenic room temperature incorporation
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Electronic Structure of Atomic-Scale 6-Doped Layers Probed with SX-ARPES

e §-layers are atomic planes of dopants * Angle-resolved photoelectron spectroscopy (ARPES)

confined in crystalline silicon. * Soft x-rays (300—820 eV) gives subsurface sensitivity (electron escape

* O-layers provide a pathway to 2D depth A. = 2 nm).

electron quuids with high densities * 12 K sample environment, 50-90 meV / 0.1° resolution. Spot size ~10
(10" cm™). x 72 pm?.

* SX-ARPES directly accesses the n\ Analyzer
buried 6-layer’s quantized sub-band '
structure and a way to measure their
out-of-plane electronic thinness.
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Resolving Quantum-Confined States in 6-Doped Silicon with SX-ARPES

N

4

* Valence bands are well resolved,
including heavy hole (HH), light
hole (LH), and split-off (SO)
bands.

W X W
Wave vector

* Fabricated an arsenic 6-layer
with 2 nm Si overgrowth.

* The 6-layer donor band pockets
appear near the conduction-
band minimum close to the X
points in the spectra.

 Quantum confinement in the 6- Constantinou et al., Advanced Science, 2302101 (2023)
layer produces discrete subbands '
at the CBM.

2 nNm
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Oscillating photoemission intensity in k, for the 6 layer state

* &-layer confinement
produces a 1D envelope 12 14 16
function in z, modulated by
an oscillatory Bloch
component.

IMFP (nm)
g5 24 23 28 28 8
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* The interference between
the envelope and Bloch
components produces a
photon-energy—dependent
oscillation in k,.

Intensity (arb.)

-
(o]

* The resonance width in k, is 3 HEEESS
inversely related to the ‘ 1
envelope’s spatial extent,
providing a direct measure
of the confinement length.

11.60 12.76 13.92 15.08 16.24 17.40 18.56 19.72
k: (A7)

Constantinou et al., Advanced Science, 2302101 (2023)
Van Venrooij, et al., In preparation

kG2 k+G,2 kG2 k,+G,*

J. Electron Spectrosc. Relat. Phenom. 229, 100 (2018)
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Arsenic 6-layers Have Stronger Confinement than Phosphorus

Growth We fabricated P and As 6-layers with 2

thickness nm and 3 nm Si overgrowth.

* The &-layer width is extracted from the
extent of the k, valley in SX-ARPES.

* Arsenic 6-layers are more tightly
confined than phosphorus 6-layers.

* The thinnest layer measured is 0.45 +
0.04 nm — just over three atomic layers.

d-layer species, depth

0.45+ 0.04
0.62 +0.10
0.91+0.21
1.03 +0.35

0
-03-02-01 0 0.1
k (A")

Constantinou et al., Advanced Science, 2302101 (2023)
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Imaging Donor Wave Functions with STM:Arsenic in Silicon

* Degenerately doped Si(001):As samples reveal subsurface donor wave functions with STM
* Samples must be prepared using a low thermal budget to preserve donors near the surface

* STM resolves both the 1s envelope and the Bloch-wave interference patterns of the donor states

Single Valley With
Approximation  Valley-Orbit

(6x) Eyg,, g E (2x)

, T (3x)
Y 1.7 meV |

— 4, (Ix)

J. Phys.: Condens. Matter 26,012001 (2014)

The oscillatory features arise from interference between the
six silicon conduction-band valleys (valley—orbit interference)

J. Phys. Condens. Matter 27, (2015)
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Implanting Si(001) with bismuth

* Si(001) wafers implanted with bismuth to create high density of bismuth 20 —
600 nm below the surface.

* Samples were flash-annealed to 1050 °C in UHV and H-terminated for STM.

* STM reveals long-ranged features consistent with hydrogenic defects states

Sample fabrication: bismuth implantation Filled (-1.2V

lon implantation H-terminated
HHHHHHHHHHHH
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Appearance: bias dependence
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* In filled-state images the features appear
as isotropic protrusions, whereas in

empty-state images they develop a
characteristic square anisotropy.
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* They do not vary bias (other than in
intensity) ruling out origins like
quasiparticle interference
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*  We observe a range of correlated
feature widths and intensities, consistent
with defects at different depths within
the substrate
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|dentifying Acceptor States in Bi-Implanted Silicon

* Surface becomes p-type after Bi implantation. M

* STM features lack the characteristic valley-
orbit interference expected for donor states.

Acceptor wave-function modelling
matches the experimental STM data

* Together, these observations show the states ‘5"'
are e

* Effective-mass and tight-binding calculations ,
(Flatté group) independently confirm the Nano Lett. 2025, 25, 38, 13996
features are acceptors, not donors.
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Bismuth implantation produced acceptor-like states rather than donors.
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Electronic Defects in Black Phosphorus Revealed by STM

* Nominally pure black phosphorus behaves as a p-type
semiconductor.

* This points to a ubiquitous presence of intrinsic defects.

* Using STM, STS, XPS, DFT, and tight-binding, we identify
substitutional Sn impurities.

* These defects are negatively charged over a wide Fermi-level
range, producing hydrogenic in-gap states.

Sn )
Negative
~
w

Sn
Neutral

Sn )
7% Positive X 0.2 0.3 04 0.5
Fermi Energy / eV

Harsh, et al.,]. Phys. Chem. Let.. | 3, 6276,2022

Black phosphorus is inherently defect-rich, and substitutional Sn donors dominate its electronic character.
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Electron doping via potassium intercalation: K, ;MoS,

* Intercalate potassium ions into the Van der
Waals gaps using liquid ammonia.

* Intercalation completes at stoichiometry
Ko.4Mo0S, after ~24 hours.

» Extremely high doping density: 4 x 10'* cm?

* XRD confirms the expected 35% increase in
layer separation (2.210.1 A).

-
o

Intensity (a.u.)

100 200
Temperature (K)
Bin Subhan, et al., Nano Lett.,21,5516, 202




Ko4Mo0S,: additional periodicity at defect sites

We observe a (2 X 2) modulation across the material, consistent with a CDWV predicted by DFT.

* Closer inspection of the defect sites reveals a (2\/? X 2\/§)R30° periodicity at these sites.

= -100 mV /30 pA_

|

3.6 £ 0.05 1 x1
1.9+ 0.1 2 X 2

11401 (2v3 x 2V3)R30°

Bin Subhan, et al., Nano Lett., 21,5516, 2021
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Origin of the charge density waves

 The conduction band minimum lies
midway along the I'-K direction for

bulk MoS,. (2v3 x 2vV3)R30°

* For monolayer undoped material the

. . 47T
CBM IS at the K POlnt. |FK| — % — 13.26 rad nm—l =211 nm—l

* Doping changes the balance again
toward the bulk CBM.

ITK| 2= 1 —
|ITA|~ =30 = 6.63 rad nm™" = 1.05 nm

e Defects are also known to increase
inter-layer coupling.

* Fermi-surface nesting (FSN) at the
bulk CBM has the correct wavelength

for the observed 2v/3 modulation.

Peelaers et al. PRB 86, 241401 (R) (2012)

Bin Subhan, et al., Nano Lett.,21,5516, 2021



Summary

We study the atomic-scale physics of semiconductors and 2D
materials, focusing primarily on dopants and defects

Using a complementary toolset we probe, image, and
manipulate electronic states with single-atom resolution

— STM/STS, SX-ARPES, XPS, and DFT/effective mass/tight-binding

These methods enable us to fabricate and characterise 6-

doped layers, directly image donor and acceptor wave | §
functions, and identify intrinsic defects in materials such as _4nm
black phosphorus and MoS, Nano Let, 21, 5516, 2021

Overall, this research provides microscopic understanding
essential for atomic-scale quantum devices and defect-
engineered technologies.

PhD studentships available, including: “Mapping the Quantum Landscape of 2D
Materials, One Atom at a Time”
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